Pitotov izrek


Pitotov izrek v ravninski geometriji iz leta 1725, imenovan po francoskem inženirju Henriju Pitotu, pravi, da sta v tangentnem štirikotniku (v katerega lahko včrtamo krožnico) vsoti dolžin nasprotnih stranic enaki, in v običajnem zapisu velja:[1][2]
Izrek je posledica dejstva, da sta odseka od presečišča soležnih tangent do dotikališč tangent enaka (na sliki PA = PB). Velja tudi obratno: krožnico lahko včrtamo v vsak tisti štirikotnik pri katerem sta vsoti nasprotnih stranic enaki.[3] Obrat izreka je leta 1846 dokazal Jakob Steiner. Pitot je izrek dokazal za tangentne mnogokotnike s sodim številom stranic in ga razširil na tangentne mnogokotnike z lihim številom stranic.
V enakokrakem trapezu, kjer je b = d, velja posebej:
in: