Triakisni tetraeder

Iz testwiki
Redakcija dne 21:28, 15. marec 2023 od imported>Botopol (odstranjevanje zastarelega parametra iz predlog)
(razl) ← Starejša redakcija | prikaži trenutno redakcijo (razl) | Novejša redakcija → (razl)
Pojdi na navigacijo Pojdi na iskanje
Triakisni tetraeder

(animacija)
Vrsta Catalanovo telo
Coxeter-Dinkinov diagram

Vrsta stranskih ploskev enakostranični trikotniki
Stranske ploskve 12
Robovi 18
Oglišča 8
Vrsta oglišč 4{3}+4{6}
Konfiguracija stranskih ploskev V3.6.6
Simetrijska grupa Td, A3, [3,3]+,
*332
Vrtilna grupa T, [3,3]+, 332
Diedrski kot 129º 31′ 16″
arccos(7/11)
Značilnosti konveksen
ploskovno prehoden

Triakisni tetraeder (tudi kistetraeder[1]) je dualno telo arhimedskega telesa ali Catalanovo telo. Njegov dual je prisekani tetraeder.

Lahko se ga obravnava tudi kot tetraeder, ki so se mu dodale tristrane piramide na vsako stransko ploskev. To pomeni, da je klitop (imenuje se po matematiku Victorju LaRueu Kleeju (1925–2007) tetraedra.

Če ima triakisni tetraeder krajši rob z dolžino 1, potem je njegova površina enaka 5311 in prostornina 25362

Sorodni poliedri

Triakisni tetraeder je del zaporedja poliedrov in tlakovanj, ki se jih lahko razširi tudi v hiperbolično ravnino. Te oblike s prehodnimi stranskimi ploskvami imajo zrcalno simetrijo (*n32).

Simetrija Sferna Ravninska Hiperbolična...
*232
[2,3]
D3h
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
P6m
*732
[7,3]
 
*832
[8,3]...
 
*∞32
[∞,3]
 
Red 12 24 48 120
Prisekane
oblike

3.4.4

3.6.6

3.8.8

3.10.10

3.12.12

3.14.14

3.16.16

3.∞.∞
Coxeter
Schläfli
Predloga:CDD
t0,1{2,3}
Predloga:CDD
t0,1{3,3}
Predloga:CDD
t0,1{4,3}
Predloga:CDD
t0,1{5,3}
Predloga:CDD
t0,1{6,3}
Predloga:CDD
t0,1{7,3}
Predloga:CDD
t0,1{8,3}
Predloga:CDD
t0,1{∞,3}
Triakisne
oblike

V3.4.4

V3.6.6

V3.8.8

V3.10.10

V3.12.12

V3.14.14
Coxeter Predloga:CDD Predloga:CDD Predloga:CDD Predloga:CDD Predloga:CDD Predloga:CDD Predloga:CDD Predloga:CDD

Glej tudi

Sklici

Predloga:Sklici

Viri

Zunanje povezave

Predloga:-

Predloga:Poliedri