Kvadratno piramidno število

Iz testwiki
Redakcija dne 20:42, 27. avgust 2021 od imported>Romanm (slika z razlago)
(razl) ← Starejša redakcija | prikaži trenutno redakcijo (razl) | Novejša redakcija → (razl)
Pojdi na navigacijo Pojdi na iskanje
Piramida topovskih krogel v strasbourškem muzeju. Število vseh krogel skupaj je 5. piramidno število, ki ga izračunamo kot 12+22+32+42+52 =165(5+1)(25+1) =55.

Piramidno število ali kvadratno piramidno število je figurativno število, ki predstavlja piramido z osnovo in štirimi stranmi. Piramidno število za dani n je določeno z:

16n(n+1)(2n+1)

Vsako piramidno število je tudi vsota kvadratov prvih celih števil od 1 do n.

Prva piramidna števila so Predloga:OEIS:

1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, ...

Piramidna števila si lahko zamislimo v fizičnem prostoru z danim številom krogel in kvadratnim okvirjem, ki skupaj drži število krogel katere tvorijo osnovo, oziroma n2. Poleg števila 1 obstaja le še eno število, ki je hkrati kvadratno število in piramidno število, 4.900. To dejstvo je leta 1918 skoraj na elementaren način dokazal G. N. Watson, domneval pa že Édouard Lucas leta 1875 (glej problem topovskih krogel).

Glej tudi