Feigenbaumovi konstanti

Iz testwiki
Pojdi na navigacijo Pojdi na iskanje
Predloga:Iracionalna števila
Zgled bifurkacije pri logistični preslikavi

Feigenbaumovi konstánti [fejgenbáumovi ~] sta v matematiki dve konstanti, imenovani po ameriškemu matematiku in fiziku Mitchellu Jayu Feigenbaumu, ki ju je odkril. Obe izražata razmerja v bifurkacijskem grafu.

Prva Feigenbaumova konstanta Predloga:OEIS:

δ=4,66920 16091 02990 67185 32038 2

je mejno razmerje vsakega bifurkacijskega intervala s sosednjim ali med premeri zaporednih krogov na osi Mandelbrotove množice. Feigenbaum je izvirno povezal to število na bifurkacije s podvojenimi periodami v logistični preslikavi

xn+1=rxn(1xn),

kjer je xn število med 0 in 1, ki predstavlja populacijo v letu n, x0 začetna populacija in r pozitivno število, ki predstavlja kombinirano stopnjo reprodukcije in stradanja. Feigenbaum je pokazal tudi, da δ velja tudi za vse enorazsežne preslikave z eno izboklino. Kot posledica bo vsak kaotični sistem, ki odgovarja takšnemu opisu, prešel v bifurkacijo pri enaki stopnji. S Feigenbaumovo konstanto se lahko predvidi kdaj se bo v takšnih sistemi pojavil kaos, še preden se res pojavi. Konstanto je Feigenbaum odkril leta 1975.

Druga Feigenbaumova konstanta Predloga:OEIS:

α=2,50290 78750 95892 82228 39028 73218

je razmerje med širino osti in širino njenih podosti z izjemo osti, ki je najbližja vilični točki.

Števili se pojavljata v velikem razredu dinamičnih sistemov. Domneva se da sta obe transcendentni, kar še ni dokazano.

Predloga:-

Predloga:Iracionalno število

Predloga:Math-stub