Antidiagonalna matrika

Iz testwiki
Redakcija dne 13:01, 9. september 2022 od imported>InternetArchiveBot (Rescuing 1 sources and tagging 1 as dead.) #IABot (v2.0.9.1)
(razl) ← Starejša redakcija | prikaži trenutno redakcijo (razl) | Novejša redakcija → (razl)
Pojdi na navigacijo Pojdi na iskanje

Antidiagonalna matrika je matrika, ki ima vse elemente enake nič, razen tistih, ki ležijo na stranski diagonali (poteka od zgornjega desnega kota do spodnjega levega).

Splošno obliko antidiagonalne matrike z razsežnostjo 5×5 lahko zapišemo kot

[0000a1000a2000a3000a4000a50000]..

Primer

Primer antidiagonalne matrike je

[0000100020005000700010000].

Lastnosti

  • Zmnožek dveh antidiagonalnih matrik je diagonalna matrika
  • Zmnožek antidiagonalne in diagonalne matrike je antidiagonalna matrika.
  • Antidiagonalna matrika je obrnljiva samo, če in samo, če so vsi elementi na diagonali od desnega zgornjega do levega spodnjega kota neničelni.
  • Obratna matrika obrnljive antidiagonalne matrike je tudi antidiagonalna.
  • Determinanta antidiagonalne matrike ima absolutno vrednost, ki je enaka zmnožku elementov na antidiagonali (stranski diagonali).
  • Vse antidiagonalne matrike so tudi persimetrične matrike

Zunanje povezave