Cayley-Dicksonova konstrukcija

Iz testwiki
Redakcija dne 13:03, 9. oktober 2022 od imported>InternetArchiveBot (Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.2)
(razl) ← Starejša redakcija | prikaži trenutno redakcijo (razl) | Novejša redakcija → (razl)
Pojdi na navigacijo Pojdi na iskanje

Cayley-Dicksonova konstrukcija omogoča tvorbo zaporedja algeber nad obsegom realnih števil tako, da ima vsaka algebra dvakratno razsežnost predhodne.

Algebre, ki se jih tvori na ta način, se imenujejo Cayley-Dicksonove algebre, ker razširjajo kompleksna števila na hiperkompleksna števila. Vse te algebre vsebujejo involucijo.

Kompleksna števila kot urejeni pari

Kompleksna števila se lahko zapiše kot urejeni par (a,b) realnih števil a in b. Pri tem se izvaja seštevanje komponenta za komponento, množenje pa je določeno kot:

(a,b)(c,d)=(acbd,ad+bc).

Vidi se, da je kompleksno število z ničelno drugo komponento enako realnemu številu, kar pomeni, da je (a,0) realno število.

Konjugirano število

Konjugirano število (a,b)*=(a,b). Za konjugirana števila velja značilnost:

(a,b)*(a,b)=(aa+bb,abba)=(a2+b2,0).

To pa je nenegativno realno število. Tako konjugacija definira normo. Zaradi tega tvorijo kompleksna števila normirani vektorski prostor nad realnimi števili.

Normo kompleksnega števila z se izračuna kot:

|z|=(z*z)1/2,

Obratna vrednost pa je:

z1=z*|z|2.

Kvaternioni

Kvaternione se dobi s pomočjo podobnega postopka.

Uporabi se urejeni par (a,b) kompleksnih števil a in b. Množenje se definira kot :

(a,b)(c,d)=(acd*b,da+bc*).

Konjugirana vrednost para (a,b) je določena kot:

(a,b)*=(a*,b).

Produkt tega števila s svojo konjugirano vrednostjo je:

(a,b)*(a,b)=(a*,b)(a,b)=(a*a+b*b,ba*ba*)=(|a|2+|b|2,0). To pa je nenegativno število. Pari teh števil tvorijo algebro, ki je podobna algebri realnih števil. Te vrste števila se imenujejo kvaternioni.

Oktonioni

Postopek se lahko nadaljuje na podoben način. Urejeni par (p,q) dveh kvaternionov p in q. Množenje in konjugiranje se definira enako kot za kvaternione. Urejeni par (p,q) kvaternionov p in q.

(p,q)(r,s)=(prs*q,sp+qr*).

Velja:

(p,q)(r,s)=(prs*q,sp+qr*).

Pri tem je treba upoštevati, da kvaternioni niso komutativni.

Algebro oktonionov je odkril irski pravnik in matematik John Thomas Graves (1806 – 1870). Oktonione imenujejo tudi Cayleyjeva števila.

Naslednje algebre

Algebra, ki sledi algebri oktonionov je algebra sedenionov. V tej algebri velja potenčna asociativnost. To pa pomeni, da za sedenion s velja snsm=sn+m.

Cayley-Dicksonova konstrukcija se lahko nadaljuje do neskončnosti. Vsak naslednji korak da novo algebro, ki je potenčno asociativna, njena razsežnost pa je dvakrat večja od predhodne.

Zunanje povezave

Predloga:-

Predloga:Navpolje