Villarceaujevi krožnici

Iz testwiki
Redakcija dne 20:30, 18. avgust 2023 od imported>Yerpo (Zunanje povezave: pp ref)
(razl) ← Starejša redakcija | prikaži trenutno redakcijo (razl) | Novejša redakcija → (razl)
Pojdi na navigacijo Pojdi na iskanje
Animacija, ki prikazuje kako poševni presek torusa, da dve krožnici, ki sta znani kot Villarceaujevi krožnici

Villarceaujevi króžnici [vilarsójevi ~] sta dve krožnici, ki nastaneta takrat, ko se torus pod določenim kotom prereže skozi središče. Skozi poljubno točko na torusu lahko tako nastanejo štiri krožnice. Prva je v ravnini, ki je vzporedna ekvatorialni ravnini torusa. Druga ravnina je pravokotna nanjo. Drugi dve sta Villarceaujevi krožnici.

Krožnici se imenujeta po francoskem astronomu, matematiku in inženirju Yvonu Villarceauju (1813 – 1883).

Zgled

Za zgled naj bo torus dan z implicitno enačbo kot množica točk na krožnicah s polmerom 3 okrog točk na krožnici s polmerom 5 v ravnini xy:

0=(x2+y2+z2+16)2100(x2+y2).

Rezanje z ravnino z = 0 tvori dve istosrediščni krožnici x2 + y2 = 22 in x2 + y2 = 82.

Rezanje z ravnino x = 0 pa tvori dve krožnici, ki ležita druga ob drugi (y − 5)2 + z2 = 32 in (y + 5)2 + z2 = 32.

Dve Villarceaujevi krožnici nastaneta z rezanjem z ravnino 3x = 4z. Ena izmed njih ima središče v točki (0, +3,0), druga pa v (0, -3,0). Obe pa imata polmer enak 5. Napišeta se lahko v parametrični obliki kot:

(x,y,z)=(4cosϑ,+3+5sinϑ,3cosϑ)

in

(x,y,z)=(4cosϑ,3+5sinϑ,3cosϑ).

Ravnina rezanja je tako izbrana, da je ta tangentna na torus in poteka skozi njegovo središče. V tem primeru sta tangenti v točkah (165, 0, 125) in pri (−165, 0, −125). Kot rezanja je določen z velikostjo torusa. Z vrtenjem ravnine okrog navpične osi, se dobijo vse možnosti za dani torus.

Glej tudi

Zunanje povezave