Gaussov snop

Iz testwiki
Pojdi na navigacijo Pojdi na iskanje
Jakost Gaussovega snopa okrog gorišča 'v časovnem intervalu' kaže dva jakostna vrhova za vsako valovno čelo.
Slika:Gauss.JPG
Prečni Gaussov profil laserskega snopa

Gaussov snop je snop elektromagnetnega valovanja, katerega prečno komponento se opiše z Gaussovo funkcijo. Snope Gaussove oblike se izračuna kot rešitve obosne Helmholzove enačbe, v praksi pa se jih najde predvsem v osnovnem laserskem žarku. Gaussovi snopi se imenujejo po nemškem matematiku in fiziku Carlu Friedrichu Gaussu.

Matematična oblika

Amplitudo elektromagnetnega valovanja se zapiše v obliki:

E(ρ,z)=E0w0w(z)exp(ρ2w2(z))exp(ikzikρ22R(z)+iζ(z)),

kjer je:

ρ=x2+y2 : oddaljenost od osi snopa,
z : vzdolžna koordinata, merjena od najožjega dela snopa (grla),
i : imaginarno število (za katerega velja i2=1),
k=2πλ : valovno število
w0=w(0) : širina snopa v grlu

Funkcije w(z),R(z) in ζ(z) se vpeljejo spodaj.

Sorodno se lahko zapiše tudi porazdelitev jakosti snopa:

I(ρ,z)=I0(w0w(z))2exp(2ρ2w2(z)).

Parametri snopa

Grafični prikaz parametrov

Širina snopa

Širino snopa w(z), ki se jo vpelje kot oddaljenost od osi z, pri kateri vrednost električne poljske jakosti pade na 1/e vrednosti na osi, se izrazi kot:

w(z)=w01+(zz0)2,

pri čemer je za določeno valovno dolžino območje bližnjega polja z0 enako:

z0=πw02λ.

Lega, kjer doseže širina snopa minimum, se imenuje grlo. Širina snopa v grlu je w0.

Območje bližnjega polja

Širina snopa v točkah ±z0 je:

w(±z0)=w02.

Razdaljo med tema dvema točkama se označi z b in se imenuje območje bližnjega polja ali dolžina grla:

b=2z0=2πw02λ.

Krivinski radij

Ukrivljenost valovnih čel, ki sestavljajo snop, se opiše s krivinskih radijem R(z):

R(z)=z[1+(z0z)2].

Pri z=0 je krivinski radij neskončen in valovna čela so ravnine. Najmanšo vrednost doseže pri z=z0, kjer je:

R(z)=2z0.

Krivinski radij se za z>z0 veča in se za velike z izraža kot:

R(z)z.

Kompleksna ukrivljenost

Kompleksno ukrivljenost se definira kot:

q(z)=ziz0,

z ostalimi parametri Gaussovega snopa se jo poveže preko recipročne kompleksne ukrivljenosti:

1q(z)=1ziz0=zz2+z02+iz0z2+z02=1R(z)+iλπw2(z).

Fazni člen

Fazni člen oz. Gouyevo fazo se izračuna kot:

ζ(z)=arctan(zz0).

Divergenca snopa

V limiti zz0 se širino snopa opiše s približno zvezo:

w(z)w0z0z=θz.

Divergenca snopa je izražena s kotom:

Θ=2θ=2w0z02λπw0(θ v radianih.).

Divergenca snopa je sorazmerna z valovno dolžino ter obratno sorazmerna s širino grla. Dobro kolimirani žarki se dobijo torej tako, da se uporabi snop s širokim grlom in majhno valovno dolžino.

Snopi višjega reda

Osnovni Gaussov snop predstavlja rešitev obosnega (paraksialnega) približka Helmholzove enačbe, vendar ni edina rešitev te enačbe. Rešijo jo med drugimi tudi snopi višjih redov:

V idealnem primeru (stabilen resonator, homogeno pomnoževalno sredstvo, popolnoma ravna ali pa parabolična zrcala,...) laser ustvarja osnovni Gaussov snop (imenuje se tudi TEM00 način delovanja). V realnem laserju različni vplivi (na primer spreminjanje optične homogenosti pomnoževalnega sredstva zaradi segrevanja) pripomorejo k popačitvi osnovne Gaussove oblike, kar se opiše z bolj zapletenimi funkcijami (Hermitovo, Laguerrovo, ...).

Viri

  • Saleh, B.E.A. & Teich, M.C. (1991). Fundamentals of Photonics. New York: John Wiley & Sons, str. 80-107. ISBN 0-471-83965-5
  • Yariv, A. (1989). Quantum Electronics, 3. izdaja. Wiley. ISBN 0-471-60997-8
  • Encyclopedia of Laser Physics and Technology

Predloga:Normativna kontrola