Duocilinder

Iz testwiki
Redakcija dne 20:22, 9. junij 2024 od imported>Botopol (slovnica)
(razl) ← Starejša redakcija | prikaži trenutno redakcijo (razl) | Novejša redakcija → (razl)
Pojdi na navigacijo Pojdi na iskanje
Stereografska projekcija sedla duocilindra (glej spodaj). Sedlo se vrti v ravnini XW.

Duocilinder (tudi dvojni valj) je geometrijski objekt potopljen v štirirazsežni evklidski prostor. Geometrijski objekt je definiran kot kartezični produkt dveh krogov s polmerom r.

D={(x,y,z,w)|x2+y2r2, z2+w2r2}

To je analogija valju v trirazsežnem prostoru, kjer je kartezični produkt kroga in daljice.

Geometrija

Povezava trimnogoterosti

Duocilinder je povezava dveh medsebojno pravokotnih trimnogoterosti s površino, ki je podobna torusu. Lahko jo opišemo z enačbami:

x2+y2=r2,z2+w2r2

in

z2+w2=r2,x2+y2r2

Duocilinder se tako imenuje zato, ker povezuje ti dve trimnogoterosti in si ga lahko predstavljamo kot trirazsežne valje, ki so tako upognjeni v štirirazsežnem, da tvorijo zaprte zanke v ravninah XY in ZW. Duocilinder ima vrtilno simetrijo v teh ravninah.

Sedlo

Sedlo duocilindra je dvorazsežna mnogoterost, ki je meja med dvema povezujočima torusoma. Ima obliko Cliffordovega torusa, ki je kartezični produkt dveh krožnic. Konstruiramo ga na naslednji način: Zvijemo dvorazsežni pravokotnik v valj tako, da se srečata njegov spodnji in zgornji rob. Potem zvijemo valj v ravnini , ki je pravokotna na trirazsežno hiperravnino v kateri leži valj tako, da se srečata njegova dva krožna konca.

Projekcije

Vzporedne projekcije duocilindra v trirazsežni prostor in njegovi prečni preseki s trirazsežnim prostorom tvorijo valje. Projekcija duocilindra v perspektivi tvori oblike podobne torusu z izpolnjeno luknjo.

Odnos do drugih oblik

Duocilinder je mejna oblika duoprizem ko bi se število prizem približevalo neskončnosti. Duoprizme tako služijo kot dober približek duocilindra.

V trirazsežnem prostoru se valj obravnava kot nekaj med kocko in sfero. V štirirazsežnem obstajajo tri vmesne oblike med teseraktom (1-kroglax1-krogla x 1-krogla x 1-krogla) in hipersfero (4-krogla). To so telesa telo, ki jih imenujemo kubinder (2-krogla × 1-krogla × 1-krogla), duocilinder (2-krogla × 2-krogla) in sferinder (3-krogla × 1-krogla). Te konstrukcije odgovarjajo razdelitvi števila 4, kar je število razsežnosti.

Glej tudi