Izrek o vrtilni količini

Iz testwiki
Pojdi na navigacijo Pojdi na iskanje

Izrèk ò vrtílni količíni pove, da je sprememba vrtilne količine telesa glede na izbrano osišče v časovni enoti, enaka vsoti sunkov vseh zunanjih navorov:

dΓdt=𝐌

Kadar na telo ne delujejo zunanji navori (M = 0), velja dΓ/dt = 0, oziroma Γ = konst. Ker je tudi vztrajnostni moment telesa konstanten, ostaja kotna hitrost takega telesa konstantna. Trditev je znana kot izrek o ohranitvi vrtilne količine.

Analogen izrek, ki velja za premo gibanje, je izrek o gibalni količini.

Dokaz izreka

Izrek lahko hitro dokažemo za točkasta telesa. Začnemo z definicijo vrtilne količine, po kateri je ta enaka vektorskemu produktu ročice r in gibalne količine G:

Γ=𝐫×𝐆

Enačbo odvajamo po času t:

dΓdt=𝐫×d𝐆dt+d𝐫dt×𝐆

Upoštevamo definicije gibalne količine p = m v, hitrosti v = dr/dt in pospeška a = dv/dt, pa lahko enačbo prepišemo v obliko:

dΓdt=𝐫×m𝐚+𝐯×m𝐯

Ker je vektorski produkt vektorja s samim seboj enak nič, drugi člen (v×v) odpade. Po Newtonovem zakonu je produkt mase in pospeška enak sili F, skladno z definicijo navora pa je produkt r×F ravno enak navoru, s čimer je izrek dokazan.